Diagnosing the stratosphere-to-troposphere flux of ozone in a chemistry transport model
نویسندگان
چکیده
[1] Events involving stratosphere-troposphere exchange (STE) of ozone, such as tropopause folds and westerly ducts, are readily identified in observations and models, but a quantitative flux specifying where and when stratospheric ozone is mixed into the troposphere is not readily discerned from either. This work presents a new diagnostic based on determining when stratospheric air is mixed and diluted down to tropospheric abundances (<100 ppb) and hence effectively participates in tropospheric chemistry. The method is applied to two years of high-resolution, global meteorological fields (1.9 degrees, 40 levels) from the ECMWF forecast model derived by U. Oslo for chemistry transport modeling and used in TRACE-P studies. The UCI CTM is run here with linearized stratospheric ozone chemistry (Linoz) and a parameterized tropospheric sink. In terms of events, the CTM accurately follows a March 2001 westerly duct stratospheric intrusion into the tropical eastern Pacific as observed by TOMS and calculates a 48-hour burst of STE O3 flux for that region. The influx associated with the event (0.3 Tg) is much less than the anomalous amount seen as an isolated island in column ozone (1.7 Tg). A climatology of monthly mean STE fluxes is similar for both years (January to December 1997 and May 2000 to April 2001), but the warm phase of ENSO December 1997 is distinctly different from the cold phase of ENSO month December 2000. Global ozone fluxes are about 515 Tg (year 1997) and 550 Tg (year 2000/2001) with an equal amount into each hemisphere, and larger springtime fluxes for both hemispheres. In terms of geographical distribution, Northern Hemisphere regions of high ozone flux follow the jet streams over the oceans in the winter and over the continents in the summer, in agreement with many previous studies. In contrast, we find the largest STE flux is located in the subtropics during late spring, particularly over the Tibetan Plateau in May. This hot spot of STE is not a numerical artifact, it occurs in both meteorological years, and it appears to be caused by the rapid erosion of the tropopause. Ozone fluxes in the Southern Hemisphere have less variability (either temporal or spatial), and they occur mainly in the subtropical region (25 S–35 S) regardless of season. The poles, throughout the year, show minimal STE O3 flux.
منابع مشابه
Five blind men and the elephant: what can the NASA Aura ozone measurements tell us about stratosphere-troposphere exchange?
Abstract. We examine whether the individual ozone (O3) measurements from the four Aura instruments can quantify the stratosphere-troposphere exchange (STE) flux of O3, an important term of the tropospheric O3 budget. The level 2 (L2) Aura swath data and the nearly coincident ozone sondes for the years 2005–2006 are compared with the 4-D, high-resolution (1×1×40-layer× 0.5 h) model simulation of...
متن کاملRoles of transport and chemistry processes in global ozone change on interannual and multidecadal time scales
This study investigates ozone changes and the individual impacts of transport and chemistry on those changes. We specifically examine (1) variation related to El Niño Southern Oscillation, which is a dominant mode of interannual variation of tropospheric ozone, and (2) long-term change between the 2000s and 2100s. During El Niño, the simulated ozone shows an increase (1 ppbv/K) over Indonesia, ...
متن کاملDynamic-chemical coupling of the upper troposphere and lower stratosphere region.
The importance of the interaction between chemistry and dynamics in the upper troposphere and lower stratosphere for chemical species like ozone is investigated using two chemistry-climate models and a Lagrangian trajectory model. Air parcels from the upper troposphere, i.e. regions of lightning and aircraft emissions, are able to be transported into the lowermost stratosphere (LMS). Trajectory...
متن کاملTransport out of the Antarctic polar vortex from a three-dimensional transport model
[1] A three-dimensional chemical transport model is utilized to study the transport out of the Antarctic polar vortex during the southern hemisphere spring. On average, over five consecutive years between 1993 and 1997, horizontal transport out of the vortex into the midlatitude stratosphere is smaller than vertical transport into the troposphere. However, there is significant interannual varia...
متن کاملGlobal simulation of tropospheric O 3 -NO x -hydrocarbon chemistry: 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons
A global three-dimensional model of tropospheric O3-NOx-hydrocarbon chemistry is used to investigate the factors controlling ozone concentrations in the troposphere. Model results indicate a close balance between chemical production and chemical loss of ozone in the tropospheric column at all latitudes (except high latitudes in winter). Using separate tracers for ozone produced in the stratosph...
متن کامل